Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 279

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2022 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2023-024, 176 Pages, 2024/03

JAEA-Technology-2023-024.pdf:22.16MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2022. Car-borne surveys, a measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create their distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. The range of fluctuation of past tritium concentration data in seawater was determined, and the causes of the fluctuation were discussed. Monitoring data in coastal area performed in 2022 owing to the comprehensive radiation monitoring plan was summarized, and temporal changes in cesium-137 were analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated air dose rate distribution data acquired through surveys such as car-borne and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2022 were published on the "Database for Radioactive Substance Monitoring Data", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Embedded system using a radiation-hardened processor (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2023-038, 48 Pages, 2024/03

JAEA-Review-2023-038.pdf:2.58MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2022. The present study aims to be developing a radiation-hardened optoelectronic processor with a 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor without any optical component with a 4 MGy TID tolerance, a radiation-hardened memory with a 4 MGy TID tolerance, and a radiation-hardened power supply unit with a 1 MGy TID tolerance. Moreover, Japanese research group will support radiation- hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team.

Journal Articles

Evaluation of excavation damaged zones (EDZs) in Horonobe Underground Research Laboratory (URL)

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei; Miyara, Nobukatsu*

Journal of Rock Mechanics and Geotechnical Engineering, 16(2), p.365 - 378, 2024/02

Excavation of underground caverns, such as mountain tunnels and energy-storage caverns, may cause the damages to the surrounding rock as a result of the stress redistribution. In this influenced zone, new cracks and discontinuities are created or propagate in the rock mass. Therefore, it is effective to measure and evaluate the acoustic emission (AE) events generated by the rocks, which is a small elastic vibration, and permeability change. The authors have developed a long-term measurement device that incorporates an optical AE (O-AE) sensor, an optical pore pressure sensor, and an optical temperature sensor in a single multi-optical measurement probe (MOP). Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste (HLW) deep geological disposal technology. In a high-level radioactive disposal project, one of the challenges is the development of methods for long-term monitoring of rock mass behavior. Therefore, in January 2014, the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center. The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation. In addition, hydraulic conductivity increased by 2 to 4 orders of magnitude. Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures. Based on this, a conceptual model is developed to represent the excavation damaged zone (EDZ), which contributes to the safe geological disposal of radioactive waste.

Journal Articles

Cavitation damage prediction in mercury target for pulsed spallation neutron source using Monte Carlo simulation

Wakui, Takashi; Takagishi, Yoichi*; Futakawa, Masatoshi

Materials, 16(17), p.5830_1 - 5830_16, 2023/09

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Cavitation damage on the mercury target vessel is induced by proton beam injection in mercury. The prediction method of the cavitation damage using Monte Carlo simulations was proposed taking into account of the uncertainties of the position of cavitation bubbles and impact pressure distributions. The distribution of impact pressure attributed to individual cavitation bubble collapsing was assumed to be the Gaussian distribution, and the probability distribution of the maximum value of impact pressures was assumed to be three kinds of distributions; the delta function, the Gaussian and Weibull distributions. Two parameters were estimated using Bayesian optimization by comparing the distribution of the cavitation damage obtained from experiment with that of accumulated plastic strain obtained from the simulation. It was found that the results obtained using the Weibull distribution reproduced the actual cavitation erosion phenomenon better than the other results.

Journal Articles

Cavitation damage prediction in mercury target for pulsed spallation neutron sources by Monte Carlo simulation

Wakui, Takashi; Takagishi, Yoichi*; Futakawa, Masatoshi; Tanabe, Makoto*

Jikken Rikigaku, 23(2), p.168 - 174, 2023/06

Cavitation damage on the inner surface of the mercury target for the spallation neutron source occurs by proton bombarding in mercury. The prediction method of the cavitation damage using Monte Carlo simulations was suggested taking variability of the bubble core position and impact pressure distribution into account. The impact pressure distribution was estimated using the inverse analysis with Bayesian optimization was conducted with comparison between cavitation damage distribution obtained from experiment and the cumulative plastic strain distribution obtained from simulation. The average value and spread of maximum impact pressure estimated assuming the Gaussian distribution were 3.1 GPa and 1.2 $$mu$$m, respectively. Simulation results reproduced experimental results and it can be said that this evaluation method is useful.

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-065, 111 Pages, 2023/03

JAEA-Review-2022-065.pdf:6.8MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted from FY2018 to FY2021. Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a novel alpha-ray camera consisting of imaging and an energy spectrometer to find the alpha dust to reduce the risk of health damage in decommissioning. We have developed the camera with a position resolution of less than 10 $$mu$$m, and the measurement test for the energy spectra was operated using several alpha-ray sources with an unfolding method.

JAEA Reports

Background radiation monitoring via manned helicopter for application of technique of nuclear emergency response in the fiscal year 2021 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Hokama, Tomonori; et al.

JAEA-Technology 2022-028, 127 Pages, 2023/02

JAEA-Technology-2022-028.pdf:15.21MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report has summarized the knowledge noted above achieved by the aerial radiation monitoring around Ohi and Takahama nuclear power stations. In addition, the examination's progress aimed at introducing airborne radiation monitoring via an unmanned plane during a nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2021 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2022-026, 152 Pages, 2023/01

JAEA-Technology-2022-026.pdf:20.14MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2021. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create air dose rate distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Monitoring data in coastal area performed owing to the comprehensive radiation monitoring plan until 2020 was summarized, and temporal changes in cesium-137 were analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained in this project with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2021 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2022-033, 80 Pages, 2022/12

JAEA-Review-2022-033.pdf:4.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop an optical fiber type radiation sensor that can measure the radiation distribution one-dimensionally along the fiber under a high radiation field for the decommissioning of 1F. Based on the conventional time-of-flight method, we found several promising sensor candidates for the radiation distribution measurement under high dose rate and many scattered gamma-rays.

Journal Articles

Calculating off-axis efficiency of coaxial HPGe detectors by Monte Carlo simulation

Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo

Radiation Physics and Chemistry, 198, p.110241_1 - 110241_7, 2022/09

 Times Cited Count:2 Percentile:50.96(Chemistry, Physical)

JAEA Reports

Continuous improvement activities on nuclear facility maintenance in Nuclear Science Research Institute of Japan Atomic Energy Agency in 2021

Task Force on Maintenance Optimization of Nuclear Facilities

JAEA-Technology 2022-006, 80 Pages, 2022/06

JAEA-Technology-2022-006.pdf:4.24MB

The Task force on maintenance optimization of nuclear facilities was organized in the Nuclear Science Research Institute (NSRI) of Japan Atomic Energy Agency (JAEA) since November 2020, in order to adequately respond to "the New nuclear regulatory inspection system since FY 2020" and to continuously improve the facility maintenance activities. In 2021, the task force has studied (1) optimization of the importance classification on maintenance and inspection of nuclear facilities, and (2) improvement in setting and evaluation of the performance indicators on safety, maintenance and quality management activities, considering "the Graded approach" that is one of the basic methodologies in the new nuclear regulatory inspection system. Each nuclear facility (research reactors, nuclear fuel material usage facilities, others) in the NSRI will steadily improve their respective safety, maintenance and quality management activities, referring the review results suggested by the task force.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 4; Proton beam technology and neutronics

Meigo, Shinichiro; Nakano, Keita; Iwamoto, Hiroki

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.216 - 221, 2022/05

For the realization of accelerator-driven transmutation systems (ADS) and the construction of the ADS target test facility (TEF-T) at J-PARC, it is necessary to study the proton beam handling technology and neutronics for protons in the GeV energy region. Accordingly, the Nuclear Transmutation Division of J-PARC has studied these issues with using J-PARC's accelerator facilities, and so on. This paper introduces these topics.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2020 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2021-025, 159 Pages, 2022/01

JAEA-Technology-2021-025.pdf:46.66MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2020. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of the air dose rates were analyzed. Regarding radiocesium deposition into the ground, surveys on depth profile of radiocesium and in-situ measurements were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. In the examination of scoring for classifying the importance of measurement points, a score map was created for Fukushima Prefecture and the 80 km zone from the FDNPS, and the factors causing changes in the score when monitoring data from multiple years were used were discussed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys with respect to the region within 80 km from the FDNPS and Fukushima Prefecture. The measurement results for FY2020 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Development of high-resolution imaging camera for alpha dust (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-044, 58 Pages, 2022/01

JAEA-Review-2021-044.pdf:3.53MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted in FY2020. The present study aims to develop a novel alpha-ray camera consisting of imaging and an energy spectrometer to find the alpha dust to reduce the risk of health damage in Decommissioning. We have developed the camera in FY2020, and the measurement test for the energy spectra. Moreover, the imaging test has been operated. In addition, we have also developed a high-dose-rate monitor system using novel scintillators with red/infra-red emission.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2021-033, 55 Pages, 2021/12

JAEA-Review-2021-033.pdf:2.9MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2020. We are developing a one-dimensional optical fiber radiation sensor that can estimate the radioactive source distribution "along lines" instead of "at points". To improve the conventional time-of-flight optical fiber radiation sensor for the application under high dose rate environment, basic evaluation tests were conducted using various optical fibers with different diameters and materials.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2020 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Sasaki, Miyuki; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; et al.

JAEA-Technology 2021-020, 138 Pages, 2021/11

JAEA-Technology-2021-020.pdf:17.11MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring via manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials surrounding FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace surrounding nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during an accident of a facility. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Tsuruga and Mihama nuclear power station, research reactors in Kindai University Atomic Energy Research Institute and Institute for Integrated Radiation and Nuclear Science, Kyoto University. In addition, examination's progress aimed at introduction of airborne radiation monitoring via unmanned plane during nuclear disaster and the technical issues are summarized in this report.

Journal Articles

Study of neutron-nuclear spin correlation term with a polarized Xe target

Sakai, Kenji; Oku, Takayuki; Okudaira, Takuya; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke; Hayashida, Hirotoshi*; Kakurai, Kazuhisa*; Shimizu, Hirohiko*; Hirota, Katsuya*; et al.

JPS Conference Proceedings (Internet), 33, p.011116_1 - 011116_6, 2021/03

In neutron fundamental physics, study of correlation term $${bf s}cdot{bf I}$$ of a neutron spin $${bf s}$$ and a target nuclear spin $${bf I}$$ is important because $${bf s}cdot{bf I}$$ term interferes to parity non-conserving (PNC) and time reversal non-conserving terms. For this study, a xenon (Xe) is an interesting nucleus because it has been observed an enhancement of PNC effect around neutron resonance peaks, and polarizes up to $$ sim 10^{-1}$$ by using a spin exchange optical pumping (SEOP) method. We would plan to develop a polarized Xe gas target with a compact in-situ SEOP system, and to study $${bf s}cdot{bf I}$$ term by utilizing epithermal neutron beams supplied from a high intense pulsed spallation neutron source. As the first step, we attempted to measure neutron polarizing ability caused by $${bf s}cdot{bf I}$$ term at a 9.6 eV s-wave resonance peak of $$^{129}$$Xe at BL10 in MLF, by detecting change $$Delta R$$ of ratio between neutron transmissions with the polarized and unpolarized Xe target. After demonstrating that our apparatus could detect small change ($$Delta R_{rm DB} , {approx},10^{-2}$$) of neutron transmissions caused by Doppler broadening effect, a signified value of $$Delta R$$ has been obtained as preliminary results. For analyzing the obtained $$Delta R$$ in detail, we are improving our nuclear magnetic resonance and electron paramagnetic resonance systems for evaluating Xe polarization independently of neutron beams.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2019 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Sato, Kazuhiko*; Haginoya, Masashi*; Matsunaga, Yuki*; Kikuchi, Hikaru*; Ishizaki, Azusa; et al.

JAEA-Technology 2020-019, 128 Pages, 2021/02

JAEA-Technology-2020-019.pdf:15.75MB

A large amount of radioactive material was released by the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company, caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been utilized to grasp rapidly and widely the distribution of the radioactive materials around FDNPS. We prepare the data of background radiation dose, geomorphic characteristics and the controlled airspace around nuclear facilities of the whole country in order to make effective use of the monitoring technique as a way of emergency radiation monitoring and supply the results during accidents of the facilities. Furthermore, the airborne radiation monitoring has been conducted in Integrated Nuclear Emergency Response Drill to increase effectiveness of the monitoring. This report is summarized that the knowledge as noted above achieved by the aerial radiation monitoring around Higashidori nuclear power station, the nuclear fuel reprocessing plant in Rokkasho village and Shika nuclear power station, the full details of the aerial radiation monitoring in Integrated Nuclear Emergency Response Drill in the fiscal 2019. In addition, examination's progress aimed at introduction of airborne radiation monitoring using unmanned helicopter during nuclear disaster and the technical issues are summarized in this report.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2020-063, 44 Pages, 2021/01

JAEA-Review-2020-063.pdf:2.55MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted in FY2019.

Journal Articles

Criticality configuration design methodology applied to the design of fuel debris experiment in the new STACY

Gunji, Satoshi; Tonoike, Kotaro; Clavel, J.-B.*; Duhamel, I.*

Journal of Nuclear Science and Technology, 58(1), p.51 - 61, 2021/01

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

The new critical assembly STACY will be able to contribute to the validation of criticality calculations related to the fuel debris. The experimental core designs are in progress in the frame of JAEA/IRSN collaboration. This paper presents the method applied to optimize the design of the new STACY core to measure the criticality characteristics of pseudo fuel debris that simulated Molten Core Concrete Interaction (MCCI) of the fuel debris. To ensure that a core configuration is relevant for code validation, it is important to evaluate the reactivity worth of the main isotopes of interest and their k$$_{rm eff}$$ sensitivity to their cross sections. In the case of the fuel debris described in this study, especially for the concrete composition, silicon is the nucleus with the highest k$$_{rm eff}$$ sensitivity to the cross section. For this purpose, some parameters of the core configuration, as for example the lattice pitches or the core dimensions, were adjusted using optimization algorithm to find efficiently the optimal core configurations to obtain high sensitivity of silicon capture cross section. Based on these results, realistic series of experiments for fuel debris in the new STACY could be defined to obtain an interesting feedback for the MCCI. This methodology is useful to design other experimental conditions of the new STACY.

279 (Records 1-20 displayed on this page)